If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+100x-510=0
a = -4.9; b = 100; c = -510;
Δ = b2-4ac
Δ = 1002-4·(-4.9)·(-510)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-2}{2*-4.9}=\frac{-102}{-9.8} =10+4/9.8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+2}{2*-4.9}=\frac{-98}{-9.8} =+10 $
| -2z+6=-2z^2 | | z/4+6=z/2-2 | | t-4.24=-4 | | 2(2(10/3)+4)+2(10/3)=x | | g=31/2=10 | | 3(-4x+1)=8x+163 | | 2d+85=13+12d | | 3y-4(y+5)=3(y-7)-15 | | 6x+36+90+2x=180 | | 2a-8=-3a+7 | | 3/4x-2/3=3 | | 7a-4=3a+4 | | 2(2x+4)+2x=28 | | -7/3/4-h=18/1/2 | | 66x+77x=44x-9x+10 | | 9x+9/9x-9=11/4 | | 4x+1/x-1=7/4 | | 5y²+5y+60=0 | | 2x-1/x-1=1/2 | | Y=4.8+-4x | | 2j−20=20+20−10j | | 3/4=15/(2x | | 4^2+9=12x | | 7x-3/1=5-2x/2 | | 4x-7/2=14+x | | 7r^2=15 | | 4x-7/2=8 | | 3(2x-5)=2(4x+5) | | 137-4y=81 | | 3y+81=150 | | 63+8y=95 | | 2=1/24y |